Surface Roughness Detection of Arteries via Texture Analysis of Ultrasound Images for Early Diagnosis of Atherosclerosis

نویسندگان

  • Lili Niu
  • Ming Qian
  • Wei Yang
  • Long Meng
  • Yang Xiao
  • Kelvin K. L. Wong
  • Derek Abbott
  • Xin Liu
  • Hairong Zheng
چکیده

There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE(-/-) mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p<0.05). When the 11 optimal features were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93% specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%, respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Automated differentiation of benign and malignant liver tumors by Ultrasound Images

Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...

متن کامل

Discrimination of Geological Top-Formations by their Morphology through SAR Images and via Fractal Geometry implementation in IEM Backscattering Model(Case Study: Zagros Thrust Belt)

Morphological discrimination of geological top-formations is the supplemental procedure of geological mapping; so in situ measurements to register geomorphological data are unavoidable; though due to the impassable and fault cliffs field operations to visit all areas within a geological map is almost impossible. Microwave or radar remote sensing, via synthetic aperture radar (SAR) images is cap...

متن کامل

Image analysis techniques for automated IVUS contour detection.

Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the detection of lumen and media-adventitia borders in IVUS images is presented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013